Prototype-Guided Pseudo Labeling

for Semi-Supervised Text

Classification

task

method

Advisor : Jia-Ling, Koh

Speaker : Ting-I, Weng

Source : ACL'23

Date : 2023/09/12

Outline

- Introduction
- Method
- Experiment
- Conclusion

Semi-supervised learning

Solve the problem of too little labeled data

Hope to use unlabeled data to assist training

many unlabeled data

Outline

- Introduction
- Method
- Experiment
- Conclusion

https://arxiv.org/abs/1904.12848

at the beginning, model trained with label data

Unsupervised Data Augmentation

reason : label data has limited effect after augmentation

Unsupervised Data Augmentation

Prototype-Guided Pseudo Labeling

Prototype-Guided Pseudo Labeling(Partition1) training method Classifier Training Signal \mathcal{L}_{s} $MLP(\phi_c)$ Annealing 1 Encoder Labeled Data $f(\cdot;\theta)$ Labeled A Data label $\widehat{V}^{\mathcal{U}}$ aure ation

t

Training signal annealing

don't use all labeled data at once

e.g. number of categories = 10 In this paper, tau need to > 1/(number of categories) => 1/10, so suppose tau = 5/10 = 0.5

7	number of categories	T(total iterations)	t	tau	threshold	
	10	10	1	0.5	1/10 x (1-0.5) + 0.5 = 0.55	
	10	10	5	0.5	5/10 x (1-0.5) + 0.5 = 0.75	
	10	10	10	0.5	10/10 x (1-0.5) + 0.5 = 1	

threshold

16

initial

threshold

current iterations

total

iterations

threshold

 $\eta_t = \frac{t}{T}(1-\tau) + \tau,$

\mathcal{L}_{s}		$P_{y_i^l}$	threshold	$\mathbb{I}(p_{y_i^l}\!<\!\eta_t)$
	labeled data 1	0.4	0.55	1
	labeled data 2	0.8	0.55	0

Prototype-Guided Pseudo Labeling(Partition2)

calculate how many pseudo labels each category should receive in this iteration

Ś

Prototype-guided Pseudo Labeling Module

Get the total number of pseudo label for each category from the previous iteration

$$\gamma_t = \arg\min_{c \in \mathcal{C}} \mu_{$$

The previous iteration finds the smallest number of pseudo-labels in each category

Assign the number of pseudo labels to each category

$$\begin{cases} \mu_{t}^{c} & \text{if } \mu_{$$

Prototype-guided Pseudo Labeling Module

Choose the length closest to the prototype

Prototype-Guided Pseudo Labeling(Partition3)

make each instance closer to the prototype of the category

Prototype-Anchored Contrasting (PAC)

Outline

- Introduction
- Method
- Experiment
- Conclusion

		Dataset	Classification '	Гуре	Class	Train	Unlabeled	Dev	Test
		AG News	News	Горіс	4	200	5000	2000	1900
	_	DBpedia Yahoo! Answer	Wikipedia 7 QA 7	lopic lopic	14 10	200 200	5000 5000	2000 2000	5000 6000
Data	aset	IMDB	Movie Review Senti	ment	2	200	5000	2000	12500
Dataset	A	G News	IMDB	Y	′ahoo! A	nswer	D	Bpedia	
description	collectio	on of news	 movie reviews Binary emotion classification 	topi	c classif	ication	extract s content informat in Wikip	structure from th tion crea edia	ed e ated
category	 W Sp Bu Sc 	orld orts isiness i/Tech	positivenegative	• • • • • • • • • • • • • • • • • • • •	Society Science Mathem Health Educatic Referent Sports Busines	& Culture & atics on & ce s & Finance	14 class • cc • ec	s ompany ducatior	1

	$\tilde{y} = \lambda y + (1 - \lambda) y'$	$ \begin{array}{c c} \hline Final Loss \\ \hline n_{\theta}(y \mid \hat{x}) \\ \hline \end{array} $
Base	Under the second secon	Supervised Cross-entropy Loss M x y^* Labeled Data $p_{\bar{\theta}}(y \mid x)$ M x y^* Labeled Data $p_{\bar{\theta}}(y \mid x)$ M $y^{\bar{\theta}}(y \mid x)$ M x y^*
Model	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	learning method
BERT	trained with only labled data	supervised
UDA	make different augment to unlabeled data	semi-supervised
Mixtext	TMix: A new data augmentation method that intervectors in hidden space to generate a new vector	erpolates two input semi-supervised

Experiment Results

the number of labeled data used 🛇

	Model	А	G New	'S		IMDB		Yaho	oo! Ans	swer	I)Bpedi;	a
		10	30	200	10	30	200	10	30	200	10	30	200
supervised	Bert	81.0	84.3	87.2	70.6	73.3	86.1	60.1	64.1	69.3	96.6	98.2	98.6
	UDA	86.4	86.4	88.3	86.4	86.4	88.7	64.3	68.3	70.2	97.8	98.3	98.8
ed	^s Mixtext	87.3	87.4	88.2	74.2	85.3	89.1	67.7	68.5	70.6	98.5	98.8	98.9
this paper	PGPL	87.8	88.5	89.2	88.9	90.2	90.3	67.4	69.1	70.7	98.7	99.0	99.0
-													
unsuperv	ised > supe	rvised	th	ie gap b	etween	unsuper	vised ar	nd super	vised na	arrows			
			PGPL	is stabl	e in all a	spects e	xcept Ya	ahoo					33

Evaluation Results with other pre-trained models

Supervised (all labels) Supervised (10 labels) Semi-supervised (10 labels) Dataset BERT BERT **RoBERTa RoBERTa** PGPL(BERT) PGPL(RoBERTa) AG News 91.2 92.4 80.2 80.7 87.8 88.4 **IMDB** 90.4 93.5 70.9 71.2 88.9 91.2 73.7 74.2 61.0 Yahoo!Answer 60.1 67.4 67.8 96.1 98.7 98.8 DbPedia 99.1 99.1 96.6 88.6 77.3 85.7 Average 89.8 76.9 86.6

this paper

metric : accuracy

Ablation Study

- 1. PGP and PAC can independently improve model performance
- 2. TSA helps too, besides DBpedia

Training Signal Annealing

Data	AG News	IMDB
PGPL	88.3	89.7
w/o PGP	86.5	88.2
w/o PAC	86.2	88.9
w/o TSA	87.2	87.9
Data	Yahoo!Answer	DBpedia
Data PGPL	Yahoo!Answer 68.3	DBpedia 98.4
Data PGPL w/o PGP	Yahoo!Answer 68.3 65.7	DBpedia 98.4 98.2
Data PGPL w/o PGP w/o PAC	Yahoo!Answer 68.3 65.7 67.4	DBpedia 98.4 98.2 98.2

Outline

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

1. A semi-supervised model PGPL that combines PAC and PGP strategies is proposed for semi-supervised text classification tasks.

2. After constructing the **prototype**, use **PAC to group text embeddings** belonging to the same category together to alleviate the **problem of underfitting**.

3. PGP selects reliable pseudo-labeled data nearby prototypes to address the training bias from the imbalanced data